SM275 · Mathematical Methods for Economics

Lesson 10. Market Models

1 A model for partial market equilibrium

- Let's consider a market with only one product
- Variables:

• Assumptions:

- Standard market equilibrium condition: demand and supply are balanced
- Quantity demanded is determined by: D = a bP (a > 0, b > 0)Does this make sense? Why?
- Quantity supplied is determined by: S = -c + dP (c > 0, d > 0)Does this make sense? Why?

Б

• Putting this all together, we have the model:

$$D = S$$

$$D = a - bP \qquad \text{where } a, b, c, d > 0 \qquad (A)$$

$$S = -c + dP$$

• (A) is a system of 3 variables and 3 linear equations

Example 1. Find a solution to (A).

• For what values of *a*, *b*, *c*, *d* does the solution in Example 1 make sense?

• Equilibrium price must be positive

• Equilibrium quantity must be positive

2 Two commodity partial market equilibrium

- Market with two products that are related to each other
- Variables:

D_1 = quantity demanded for product 1	D_2 = quantity demanded for product 2
S_1 = quantity supplied for product 1	S_2 = quantity supplied for product 2
$P_1 = \text{price of product } 1$	P_2 = price of product 2

• Model:

$$D_{1} = S_{1} D_{2} = S_{2} D_{1} = d_{0} + d_{1}P_{1} + d_{2}P_{2} D_{2} = \delta_{0} + \delta_{1}P_{1} + \delta_{2}P_{2} (B) S_{1} = s_{0} + s_{1}P_{1} + s_{2}P_{2} S_{2} = \sigma_{0} + \sigma_{1}P_{1} + \sigma_{2}P_{2}$$

- (B) is a system of 6 variables and 6 linear equations
- Depending on the economic context, the parameters d_0 , d_1 , d_2 , s_0 , s_1 , s_2 , δ_0 , δ_1 , δ_2 , σ_0 , σ_1 , σ_2 will have particular signs, magnitudes or relationships between each other
 - Product 1 and product 2 are **substitutes** if:
 - Product 1 and product 2 are complements if:
- Using the equilibrium conditions, we can simplify the above model into 2 variables and 2 linear equations:

3 What's next?

- We have seen some examples of economic models that lead to systems of linear equations
- What if we have 3 products? 4 products? 100?
- Matrices are a useful tool for solving linear systems of any size